1597: [Usaco2008 Mar]土地购买
Description
农夫John准备扩大他的农场,他正在考虑N (1 <= N <= 50,000) 块长方形的土地. 每块土地的长宽满足(1 <= 宽 <= 1,000,000; 1 <= 长 <= 1,000,000). 每块土地的价格是它的面积,但FJ可以同时购买多快土地. 这些土地的价格是它们最大的长乘以它们最大的宽, 但是土地的长宽不能交换. 如果FJ买一块3x5的地和一块5x3的地,则他需要付5x5=25. FJ希望买下所有的土地,但是他发现分组来买这些土地可以节省经费. 他需要你帮助他找到最小的经费.
Input
* 第1行: 一个数: N
* 第2..N+1行: 第i+1行包含两个数,分别为第i块土地的长和宽
Output
* 第一行: 最小的可行费用.
Sample Input
4
100 1
15 15
20 5
1 100
输入解释:
共有4块土地.
100 1
15 15
20 5
1 100
输入解释:
共有4块土地.
Sample Output
500
HINT
FJ分3组买这些土地: 第一组:100x1, 第二组1x100, 第三组20x5 和 15x15 plot. 每组的价格分别为100,100,300, 总共500.
算法一:DP+栈优化
复杂度O(n log n)
蒟蒻wy表示刚开始打的比较挫。。。
#include<cstdio> #include<algorithm> using namespace std; #define MaxN 50010 int N,cnt; struct point{ int x,y; point(){} point(int a,int b){ x=a; y=b; } }P[MaxN]; int st[MaxN]; int b[MaxN],e[MaxN],t,w; long long f[MaxN]; bool cmp(point a,point b){ return a.x>b.x || a.x==b.x&&a.y>b.y; } int main(){ scanf("%d",&N); for (int i=1;i<=N;++i){ int x,y; scanf("%d%d",&x,&y); P[i]=point(x,y); } sort(P+1,P+N+1,cmp); for (int i=1;i<=N;++i) if ( i==1 || P[cnt].y<P[i].y ) P[ ++cnt ]=P[i]; b[0]=1; e[ st[ t=0 ] =0 ]=cnt; for (int i=1;i<=cnt;++i){ while ( e[ st[w] ] < i ) ++w; // b[st[w]]=i; f[i]=f[ st[w] ]+(long long)P[ st[w]+1 ].x*P[i].y; if ( f[ st[t] ]+(long long)P[ st[t]+1 ].x*P[cnt].y < f[i]+(long long)P[i+1].x*P[cnt].y ) continue; while ( w<=t && f[ st[t] ]+(long long)P[ st[t]+1 ].x*P[ b[ st[t] ] ].y >= f[i]+(long long)P[i+1].x*P[ b[ st[t] ] ].y ) --t; int be=e[ st[t] ]+1,l=b[ st[t] ],r=e[ st[t] ]; while (l<=r){ int mid=(l+r)/2; if (f[ st[t] ]+(long long)P[ st[t]+1 ].x*P[mid].y >= f[i]+(long long)P[i+1].x*P[mid].y){ be=mid; r=mid-1; } else l=mid+1; } e[ st[t] ]=be-1; st[++t]=i; b[i]=be; e[i]=cnt; } printf("%lld\n",f[cnt]); }
#include<cstdio> #include<algorithm> using namespace std; #define MaxN 50010 int N,cnt; struct point{ int x,y; point(){} point(int a,int b){ x=a; y=b; } }P[MaxN]; int st[MaxN]; int b[MaxN],e[MaxN],t,w; long long f[MaxN]; bool cmp(point a,point b){ return a.x>b.x || a.x==b.x&&a.y>b.y; } long long calc(int a,int b){ return f[a]+(long long)P[a+1].x*P[b].y; } int main(){ scanf("%d",&N); for (int i=1;i<=N;++i){ int x,y; scanf("%d%d",&x,&y); P[i]=point(x,y); } sort(P+1,P+N+1,cmp); for (int i=1;i<=N;++i) if ( i==1 || P[cnt].y<P[i].y ) P[ ++cnt ]=P[i]; b[0]=1; e[ st[ t=0 ] =0 ]=cnt; for (int i=1;i<=cnt;++i){ while ( e[ st[w] ] < i ) ++w; b[st[w]]=i; f[i]=calc(st[w],i); if ( calc(st[t],cnt) < calc(i,cnt) ) continue; while ( w<=t && calc(st[t],b[st[t]]) >= calc(i,b[st[t]]) ) --t; int be=e[ st[t] ]+1,l=b[ st[t] ],r=e[ st[t] ]; while (l<=r){ int mid=(l+r)/2; if (calc(st[t],mid) >= calc(i,mid)){ be=mid; r=mid-1; } else l=mid+1; } e[ st[t] ]=be-1; st[++t]=i; b[i]=be; e[i]=cnt; } printf("%lld\n",f[cnt]); }
算法二:DP+斜率优化
复杂度O(n)
wy表示忘记初始化了,然后查了很久。。。QAQ
#include<cstdio> #include<algorithm> using namespace std; #define MaxN 50010 int N,cnt; typedef long long LL; struct point{ int x,y; point(){} point(int a,int b){ x=a; y=b; } }P[MaxN]; int Q[MaxN],ql,qr; LL f[MaxN],X[MaxN],Y[MaxN]; bool cmp(point a,point b){ return a.x>b.x || a.x==b.x&&a.y>b.y; } LL calc(int a,int b){ return f[a]+(LL)P[a+1].x*P[b].y; } bool check(int p,int q,int o){ return (X[q]-X[o])*(Y[p]-Y[o])-(X[p]-X[o])*(Y[q]-Y[o])>=0; } int main(){ scanf("%d",&N); for (int i=1;i<=N;++i){ int x,y; scanf("%d%d",&x,&y); P[i]=point(x,y); } sort(P+1,P+N+1,cmp); for (int i=1;i<=N;++i) if ( i==1 || P[cnt].y<P[i].y ) P[ ++cnt ]=P[i]; Q[ ql=qr=1 ]=0; X[0]=P[1].x; Y[0]=0; //论初始化的重要性 for (int i=1;i<=cnt;++i){ while ( ql<qr && calc(Q[ql],i)>=calc(Q[ql+1],i) ) ++ql; f[i]=calc(Q[ql],i); X[i]=P[i+1].x; Y[i]=f[i]; while ( ql<qr && check(Q[qr],Q[qr-1],i) ) --qr; Q[++qr]=i; } printf("%lld\n",f[cnt]); }
Ps:以上解法详见 1D/1D动态规划优化初步